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SECTION I

INTRODUCTION

This report is concexned with the following invexrse problem: given the
strain response of a penetrator vehicle as functions of time, identify the
loads as functions of time. The objective of this effort is to use experimental
records of strains in vehicles to determine the forces sustained by a vehicle
during penetration. 1In this effort, attention is limited to the deveclopment of
appropriate technigues for the problem and the testing of certain aspects of these

techniques by comparison with solutions and experimental results.

The identification problem for off-normal impact is quite complex, for it
involves separate flexural and axial effects that arise from loads distributed
over a fairly large area. In the present investigation, attention is restricted
to the linear response of the vehicle, that is, the strains are assumed to remain
small and the response is assumed to be elastic. The vehicle is modeled as a
uniform rod with the nose represented by a rigid body. Contact stresses are

represented as point loads and moments at the center of mass of this rigid body.

The identification problem is subdivided intoc two parts: the determination
of the axial force and the determination of the flexural forces. A simple
procedure is developed so that if the axial strain is known as a function of
time at any point along the neutral axis of the vehicle, the axial force on the
nose can be determined. The determination of the flexural forces requires that
strains be measured at a minimum of two stations along the length of the vehicle;
at each station, strains must be measured at three points. The procedures are

outlined in Sections 2 through 4. 1In Section 5 some sample results

are given which illustrate the effectiveness of the methods for the axial and

flexural problem. The methods are then used to identify the forces for a reverse
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ballistics experiment (ref. 1). The results are evaluated by applying these

identified loads on a detailed finite element model and comparing computed

strains and accelerations to experimental recoxds.
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SECTION II

THE FORCE IDENTIFICATION PROBLEM

In its most general terms, the identification problem consists of deter-
mining the distribution of normal and tangential loads on the vehicle as a
function of time. This identification must be accomplished from strain gauge
records at selected points in the vehicle and perhaps one or two accelerometer

records. The elements of this problem are illustrated in Fig. 1.

When considered in this degree of generality, the identification problem is

horrendously difficult. The reason for this is explaired in the following.

. . . . A
Consider the pressures at points A and B, shown in Fig. 1, which are called P

B . .
and pn , respectively. The response of a strain gauge at C due to the pressures

A B . . . . . .

P, and P, will differ because the signal from B will arrive sooner than that
from A. However, subsequent to the arrival of the wave from B, there is no way
to distinguish whether the signal arrived from A or B, unless a strain gauge

is located between A and B.

It is possible to distinguish the signals if the expected depth of penet-
ration is known as function of time. However, if the load is to be determined
aftexr partial penetration of the nose, this information is of little help since
subsequent to penetration beyond B, both points A and B can be sources. This,
in conjunction vith practical limitations on the number of available strain gauge

records, renders the general problem of distributed load identification impractical.

For purposes of formulating a practical force identification problem, we
will limit the endeavor to net resultant forces on a specified segment of the

vehicle. The following assumptions are made:
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Contact betweer the vehicle and medium occurs primarily in the nose
region; behind the nose, the medium tends to separate from the vehicle.
ii. No significant torgues about the vehicles axis are exerted, nor does

the vehicle spin about its axis.

T
'

The first assumption is based largely on normal impact calculations per-

formed by CRT (ref. 2). In off-normal impaci, the DNA-SANDIA (ref. 1) experi-

ments have shown significant backslap, so this assumption limits the method to

identification of early loads. Without this assumption the identificaticn problem

A A e 3

would become very complex. The second assumption is based on the obsexvaticn

oy

that in impact, no mechanism exists which would exert a torgue on the vehicle.

The vehicle is modelled as a uniform elastic bar and the nose represented

%

H

: by a rigid body of finite dimensions. This simplification was used in predicting
% the respense to normal impact of the DNA-SANDIA vehicle (ref. 3) and was guite

§ successful. The model is shown in Fig. 1. -

g

!

. The loads to be identified then consist of the following forces and moments
B on the nose (rigid-body in the model):

§

g i. the axial force, fx(t}, and transverse forces fv(t} and fz{t)

ii. the moments m (t) and m_(t).

% In order to describe the equations governing this model, it is convenient

‘< to introduce two coordinate systems:

:

£

- i. a moving coordinate system (x,y,z) embedded in the projectile such that
% x always lies along the axis of the vehicle as shown in Fig. 2, with

é the origin located at the interface between the rigid body and the

% deformable bar;

;? ii. a coordinate system (X,¥,2) fixed to the target, which is considered

]

i

inextial.




A - Strain
gauges

Figure 2. Coordinate systems and nomenclature.
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The displacement of a point in the vehicle, r, relative to the vehicle's

coordinates is given by a vector 3 with components Ver Vor Voo which are assumed
to be small. The displacement of the center of mass of the vehicle is denoted
by g. The angular velocity and angular acceleration of the vehicle are & and

3. The acceleration of any point of the vehicle is then

-> -> > - -> > > >
=u+20XVv+aAxXxr+0x (wxr)

Hy
]

Since we assume the vehicle is not spinning, its only nonzero angular

velocities are wy and wz. Moreover, the vehicle is considered slender and the
rotatory inertia of the cross-section will be neglected. From these assumptions

it follows that

The acceleration components in the (x,y,z) systems are given by

M st BT P g R, By

i

. . . 2 2, -
= - - 2.3
ux+2(wyvz wzvy) (wy + w, ) x ( )

1t

i
|

=4 +20 v+ 0.x 2.1)
% z x z




Linear strength of materials theory will be employed for describing the
dynamic deformation response. Simple first order rod theory which neglects
the effects of transverse inertia will be used for the axial response. Euler
beam theory will be used for the bending response. The cross-section of the

vehicle is assumed to be axisymmetric so that the moment of inertia of the cross-

section is isotropic. Therefore bending in the x-y planes and in the y-z planes
is uncoupled for any choice of the orientation of the y and z coordinates.
Moreover, the axial deformation is uncoupled from bending because of the assump-

tion of small displacements.

The governing equations are then

v = R (2.6)
X, XX X

2 vV X = R (2.7)

Cb 1 XXXX = v .

cc v =R (2.8)

b z,xxxx z

where commas denote derivatives. The accelerations are given by Egs. (2.3) to

(2.5) and
p = density of vehicle material
E = Young's modulus of vehicle material
A = cross-sectional area
I = moment of inertia of cross section about both the y and z axes
02 = E/p,elastic rod wavespeed

2]
]

EI/pA

By using Egs. (2.3) to (2.5), Egs. (2.6) to (2.8) can be written as

vtttk
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£
T




c. Vv
b z,xxxx

. . Z 2 -
2(wyvz - wzvy) - (wy + wz) X

- —
20 v + o X
zZ X A

_ *
-20 V. -4 X
Yy X z

¢
H
1
H
«
H
S
H
H
¥

The terms bx' by, and bz couple Egs. (2.9) to (2.11). 1In order to uncouple
the equations we assume that these terms vanish. Since the rigid body motion
V is independent of x,y and z, its derivatives vanish and we can replace

Egs. (2.9) to (2.11) by

O U oty

'

P

Ol ey oy N

mo ey,

The displacements uy and u, and their second derxivatives must be small, but
ux wmay be arbitrarily large, although its first derivative must also be small.

The boundary conditions are
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W

o

AEnu =Ma - £ (&) at x =0
X,X X
(2.18)
Au = 0 at x =L
X, X
~-EIu = MU - W - f (t
Y XXX Y er) Y( )
(2.19)
EI (u - =J 4 -nm {t
¢ Yo XX Y:xxx) YiX 2( )
at x =90
-E I uz,xxx = M(uz - fu . ) - fz(t)
E -2 = u .
I (uz,xx uz,xxx) J uz,x + my(t) (2.20)
u = = 0 at x =L
Z,XX 2, XXX

where J is the moment of inexrtia of the rigid body. Initial conditions provide

the initial velocity of the projectile.

The strain at any point x,y,2 in the structure is given by

e(x, Y. z, t) =u ~-Y

-z u (2.21)
X, X

u
V. XX Z, XX
The identification problem then consists of the following: given strain histories
at selected points Xio Yio 240 determine the forces fx(t), fy(t), and fz(t)
and the moments my(t) and m_(t). For convenience, we denote by {F (£)} the

complete matrix of forces to be determined: { £ , £ f,m, m 1.
X Y, 2 Y z

When strain records at three different points yj, zj are given at any

cross section Xi0 then Eq. (2.21) can be solved uniquely to yield the response

{x(v)} = {ux,x(xi't)’ uy,xx(xi't)' uz‘xx(xi,t)} provided that the matrix

14
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[a] = 1

. is not singular
The matrix [A] is singular if and only if all three points are collinear.

§ Thus any triangular arrangement of the points Yj' zj is sufficient to permit

the determination of {x(t)}.

once {r(t)} is given. The complete identification problem can be subdivided

ia

into three uncoupled parts:

LT

i. given ¢ = L (xi, t), determine fx through Eq. (2.15) and boundary

’

conditions (2.18)

My g 1

ii, given uy xx (xi, t), determine m, and fy through Eq. (2.16) and

’

e

boundary conditions (2.19)

i Bl g

iii. given uz,xx (xi, t), determine m, and f, through Eq. (2.17) and

boundary conditions (2.20).

A N

Problem (i) is an axial problem, problems (ii) and (iii) identical
flexural problems; they are discussed in Sections 3 and 4, respectively.
For two dimensional problems, where the motion of the vehicle is planar, only

problems (i) and (ii) need be solved.

B P Y
I

P,



SECTION III

AXIAL FORCE IDENTIFICATION

We consider here the problem of the identification of the axial load. The

axial response problem is governed by the equations and boundary conditions

(subscripts x are omitted in this section)

1l ..
¢
AEu,x =Mu - f(t) atx =0 (3.2)
u, =20 at x = L (3.3)
x

which correspond to Egs. (2.9) and (2.18). The initial conditions are taken

to be

u{x,0) =

|
o

(3.4)

u(x,0) = 0 (3.5)

The problem is to obtain the time history of the net force on the nose,

£(t), given the axial strain time history at one point.

We will use laplace transform techniques. Xet the ILaplace transform of a
given variable be denoted by a corresponding upper case letter, i.e. U(x,s) is
the Iaplace transform u(x,t), so that

oo

U(x,s) =f u(x.t)e"St dt (3.6)
0




Similarly E(s) is the Laplace transform of €(t), F(s) the Laplace transform of

£(t).

Taking the Laplace transform of Eq. (3.1) and noting that the initial

conditions are zero, g:

2
5_

5 U(x,s)

U,xx(x,s) =

which has the solution

~-sx/c esx/c

U(x,s) = Kle + K2

The Laplace transforms of the boundary conditions, (3.2) and (3.3), give

AEU,x(O,s) =M szU(O,s) - F(s)

U,x(L,s) =0

Substituting Eq. (3.8) into Egs. (3.9) and (3.10) yields two linear, algebraic

equations in Kl and Kz, the solution of wnich is

= eZLS/c F(s)/G(s)

F(s)/G{s)

AE e2Ls/c

- RAE - RE
_s[(Ms+c) + (Ms c)]




(3.8), it also follows that the Laplace transform of the strain at

any point X, is given by
s -sx./c sx;/c
= — f[= R
E(xi,s) - [-Ke + Kye 1

Substituting Egs. (3.11) and (3.12) into (3.14) and solving for F(s) yields

c:Eixi,s) G(s)

o 2T-xj)s/c

Substituting Eq. (3.13) into Eq. (3.15), we can write the latter as

[(Mcs + AE)e + (Mcs - AE)}

The time domain counterpart of Eq. (3.16) is

i E ]
£t + ??.) - f(t + Hce(xi,t) - AEE(xi,t)

. 2L 2L
N ket £ 4 =22
+ dce(xi,t + 2 ) + AEs(xi, + = )

Thus by shifting in time by (2L~xi)/c, we obtain from Eg. (3.17) that

£(t) = £(t - 2 (L - x;)/c) + AE [elx,,t - ) - elx,,t + c—i) ]

- l L
- Mc [l‘: (xi't+—(:—)_€ (xipt-

(3.14)

(3.15a)

(3.15b)

(3.16)
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From the above equation, it is apparent that once an axial strain record is
known at any given point, the force history can be determined. Although a
Laplace transform approach has been used, from the time shifts that occur in
the equations, it is apparent that this result follows from the nature of the
solution to the wave equation. The solution always consists of a wave induced
by the force which moves to the left and an image moving to the right, shifted
in time by L/c, which maintains the stress free condition on the right end of

the rod. The laplace transform approach serves to formalize these results.




SECTION 1V

FLEXURAL FORCE IDENTIFICATION

From each flexural equation, two quantities, a force and a moment, must

be determined. The flexural equation and associated boundary conditions, Egs.
(2.10) or (2.11), and (2.19) or (2.20), can be written
1 ..
w, + — w =0 (4.1)
XXXX cz
b
_ o g _ - a.
W, 2 (W xw,x) £ at x =0 (4.2)
Vo lw, =c, W, -m at x =0 (4.3) :
w, =0 at x =1L (4.4)
pro’e =
W, =0 at x =1L (4.5) 4
XXX
where
2 - EL 3
b pA (4.6) =
I —— 4.7 =
c, T (4.7) 3
=
J =
= = 4.8 =
% T E (4.8) 3

The problem is to identify f£(t) and m(t) from records of the curvature

Wi (xi,t). As in Section 3, we will use a Laplace transform approach and

denote the Laplace transform by upper case letters.

20 e
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Taking the Laplace transform of Eq. (4.1) yields
=
s2
W, t+= W=0 (4.9) =
y :

for which the solution is £

g wix,s) = Kl e + x2 e + K3 e + 1<4 e {4.10)
_ . S - s s -
Y, = 1+ 3) \/2cb Y, L -3 2cb (4.131)

and Ki are functions of s, and

5= /T (4.12)

The boundary conditions at x = 0 and x = L. can be written in partitioned matrix

il '\!VIIm,|||[|mu‘!I"|I:W "WM[L!;'mmmnl‘kr'lrlrﬁxm.||5[[[illitlm!!m:||||mvm Uk L] el

form in terms of W(x,s) as follows

- _ PIS-‘ ’FW

r -
;] ) ,] K, 9 i
[ b = 4 b (4.13) %
K 0 =
[H,, ) I8, ) 3 %
. s
- - K :
\ 4] ) %%
2 3 2 ) .3 -
c,s 1 - ylﬂ.) + Y, s (1+ {12) Ty z
[Hlll (4.14a) %
2 2 2 2 =

Yp G- o -csyy Y; @+l +esy :

21
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2
[Hzll =Y N
Y4 Yl
Y, 2
e
2
Y, 4

3

2 .
c,s (1 - Yzl) + Y,

1

2 2 3
Y5 (1L - Yzi) - C,5 Y, \2(1 +

\{2

2 3
c.s (1+Y22)-Y2

2
£) + c,s 72

The transform of the response, at any point X0 is given by

Y, X, -Y.X. YoX,
2 '171 2 2 "2
W,y (%5,8) = Klyle + K2Y1° ol *

+ KYoe

+

2

K, Y

3e

X,
1

(4.14c)

(4.149)
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and x_, then we can write

If the curvature is given at two points, Xy 5

W(xl.s)

= [[Ln] “‘12]] {KZ» (4.16)

w{xz,s)

From Eq. (4.13), it follows that

(4.17

Hence

w(xl,s)

_ -1 le

W(xz,s) K2

If we call the above square matrix [G], Egs. (4.14) and (4.18) yield

F(s) 1 4 |
=m0 - w0 E)T W] (6] (4.19)

H(s) W(Xz.s)

23




An explicit +transformation of the above into the time domain is impossible.
Instead, the operations of Eq. (4.19) were carried out in the frequency domain,

using Fast Fourier Transform algorithms.

The procedure consists of the following. Transforms are obtained of the
response W, . at two points. The transfer function relating the input to the
response is then evaluated; its product with the response yields the transform
of the forcing function. The inverse transform of the forcing functions are

then taken to obtain the forcing functions in the time domain.

The submatrix [H22] is singular at s = 0 (rigid body mode) and at the

natural frequencies. To make the inversion possible, artificial damping is
added to the system. This displaces the zeroces from the imaginary axis and so

avoids the singularities.

Note that the number of distinct forces that can be identified depends on
the number of response records. Two response records are needed to identify the
force and moment on the nose. If backslap is to be identified, it could be
represented by an inhomogeneous term in the boundary condition Eq. (4.5); res-

ponses at three points along the axis of the vehicle would then be needed.




i

SECTION V

ILLUSTRATIVE RESULTS

T

The force identification procedures for the axial force and the flexural

forces have been tested through the use of analytic and finite element solutions.

TR A A AP

P—

Analytic solutions were used to test the procedure as follows: the strain was

predicted for a prescribed forcing function at the nose, and this strain was

RS S Ay
A T A

then used as input to the identification procedure. The identified load was

then compared with the actual force. The finite element test was similar except

] that finite element solutions were used rather than an analytical solution to

obtain the strains from the forces.

In both tests, the vehicle described in Fig. 3 was used. The first test

involved only an axial load with the time history shown in Fig. 4. The responses
2 at x = 7in, and 15in. are shown in Figs. 5 and 6. Figure 7 shows the force as
computed from the identification procedure given in Section 3, and compares the
results to the applied load. As can be seen, the identified axial load corres-
ponds closely with the actual load. There are some discrepancies at the points
at which the slope of the actual load is discontinuous; the identified load at

those points tends to smooth over these discontinuities.

The same procedure was repeated with the finite element solution. The
finite element solution shows the effect of the vehicle idealization
and the sensitivity of the identification procedure to spurious oscillations.
Finite element solutions have spectral amplification and cut-offs similar to
strain gauges. The identified force is compared to the actual force in Fig. 8.
As can be seen, for the finite element solution, the identified force does not

correspond as closely to the actual input force as in the case of the analytic
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Figuie 7. Comparison of actual and identified £(t) using strain
at x = 7.0 from analytic solution.




solution.

There is a more pronounced oscillation about the actual solution.

Some of these oscillations may be removable by digital filtering.

In the third example, a moment with a time history was applied to the nose
in addition to an axial force on a finite element model. The identified loads
are compared to the applied loads in Fig. 9. 1In this case, the identification is

not as accurate as for the axial force. The use of numerical transforms introduces

substantial errors unless tremendous resolution is used in the frequency domain.
The identification shown here represents a compromise between adequate resolution
and reasonable computer time. The maximum moment and salient aspects of the

time history are well represented; but the predicted moment exhibits a significant

W 0% 00 P g 0,y g gl @

lag.

Numerical experiments have also been carried out in identifying both the

moment and shear from curvature records at two stations. These have been quite

unsatisfactory. To obtain a transfer function which is invertible, considerable

W e o

damping is needed, and the identified forces and moments are quite sensitive

to the magnitude of the damping. Therefore, in the following section, only the

e

transverse force was identified for the flexural problem.
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Figure 8. Comparison of actual and identified f(t) using strain
at x = 7.0 from finite element solution.
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SECTION VI

i

ik

LOADS FOR DNA REVERSE BALLISTIC

i
!

EXPERIMENTS

= We will here describe the loads identified for the DNA reverse ballistic

experiments conducted at Sandia laboratories (ref. 1). The study is limited to

Test 3 in which the projectile was in a 3 degree nose-down attitude; i.e. the angle
of attack was 3 degrees. Test data consisted of four accelerometer records, two

axial and two lateral, and seventeen axial strain gauges.

In this Section, we will describe the simplifications which were necessary
to generate a model suitable for the force identification. Once the forces were
identified, they were applied to a detailed finite element model of the projectile.
The strains and accelerations predicted by the finite element model are then

compared to experimental results.

U © e 3 L0 140 s 0

A schematic of the projectile is shown in Fig. 10. The idealization employed

for the force identification is shown in Fig. 11. Several features of the
projectile had to be omitted because the identification model is limited to a
single rigid mass and a rod of uniform properties. The rigid mass was used to model

the portion of the projectile between 0 and 3.45 inches. The uniform xod was then

given the dimensions of an average cross-section. In the actual model, we have

‘ four distinct sections behind the nose (1) the kennertium plug and steel barrel

from 3.45 inches to 7.45 inches; (2) the 1.702 inch 0.D. section from 7.45 inches

to 2.64 that houses the front accelerometers; (3) the tapered section from 9.64 inches
to 13.04 inches, in which the 0.D. increases from 1.702 inches to 1.900 inches;

(4) the last constant diameter section from 13.045 inches to 18.15 inches. The

idealized model is too stiff in comparison to the first half of the vehicle, and too




flexible in compariscn to the second half.

|
it

The loads were identified from the strain gauge records at station 9.6 inches,

‘ull. it ( il

Y

gauges 3 and 10. (shown in Figs. 17 and 18). This location was chosen because it

is as far as possible from the irregularities near the front accelerometer and

relatively clean records were obtained in Test 3. The force was identified only

for 0.4 msec; after that time the vehicle penetrates beyond the nose.

The identified axial and transverse loads are shown in Fig. 12. The maximum

axial load 3is 130,000 1bs. and occurs at 300 microseconds; the maximum transverse

il

PRI

load is 26,000 lbs. and occurs at 50 microseconds. Both of the records shown were

extensively filtered.

These loads were then applied to the finite element model shown in Fig. 1l for
a 0.6 msec simulation, the loads at 0.4 msec were held constant. The model was
solved by the program WHAMS - 2D (ref. 4) using explicit time integration. All

acceleration results were smoothed by a 10 point averaging filter (ref. 5). The

i LLM, ,‘I‘\"I‘! I MMMMU L I‘Il,i|‘||“

acceleration results are compared to the four accelexrometer recoxrds for Test 3 in

Figs. 13 to 16. As can be seen, the axial accelerations, Figs. 13 and 14, agree

L i

quite well with the experiment, indicating that the axial load identification was

successful. The agreement of the lateral records, Figs. 15 and 16, is quite poor.

Strain gauge output is compared to the experiment in Figs. 17 to 23. Particularly

for the first 0.4 msec, the agreement is satisfactory. The increasing discrepancy

B A

after this time is understandahle since the loads were only identified to 0.4 msec.
However, it is unclear why the agreement in lateral accelerations is so poor in

comparison to the strains. A possible explanation may iie in the nonuniqueness of

the identification problem. If a different model were selected, the non miqueness

may lead to substantially different lateral forces but still the same strains. It
is this nonunigueness which is also undoubtedly related to the numerical difficulties

of inverting the problem.
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Figure 14. Axial acceleration (x-component) at station 16.35 (Accelerometer 4)
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